DETERMINATION OF MATERIAL RESPONSE AND OPTIMIZATION OF JOHNSON-COOK DAMAGE PARAMETERS OF ALUMINIUM 7075 ALLOY
Öz
The effects of rolling direction and notch radius on the mechanical response of aluminium 7075-T651 alloy were investigated and the Johnson-Cook damage parameters of aluminium 7075-T651 alloy on both rolling directions were determined. Specifically, mechanical responses of aluminium 7075-T651 along the rolling direction and perpendicular to the rolling direction were obtained from monotonic tensile tests. 56 tensile tests in total were performed on notched specimens with 3 different notch radiuses and smooth specimens. Tensile tests were repeated 7 times for each case to ensure the consistency and to obtain the closest mechanical response to the real mechanical response with minimum error. Experimental findings revealed that being perpendicular to the rolling direction deteriorates the elongation at failure dramatically but can increase the mechanical properties in elastic region. The final areas of the fractured samples, used for the calculation of Johnson-Cook damage parameters, were measured by an optical microscope. The Johnson-Cook damage parameters of aluminium 7075-T651 alloy for different applications were computed by Levenberg-Marquardt optimization method. Collectively, this study opens the venue for accurate damage simulations of aluminium 7075-T651 along the rolling direction and perpendicular to the rolling direction for different applications.
Anahtar Kelimeler
Tam Metin:
PDF (English)Referanslar
Binder, M., Klocke, F. & Lung, D. (2015). Tool wear simulation of complex shaped coated cutting tools. Wear, 330–331, s. 600–607. doi:10.1016/j.wear.2015.01.015
Bobbili, R., Ramakrishna, B., Madhu, V. & Gogia, A. K. (2015). Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures. Defence Technology, 11, s. 93–98.
Bobbili, R. & Madhu, V. (2016). Effect of strain rate and stress triaxiality on tensile behavior of Titanium alloy Ti-10-2-3 at elevated temperatures. Materials Science and Engineering A, 667, s. 33–41. doi:10.1016/j.msea.2016.04.083
Bobbili, R., Paman, A. & Madhu, V. (2016). High strain rate tensile behavior of Al-4.8Cu-1.2Mg alloy. Materials Science and Engineering A, 651, s. 753–762. doi:10.1016/j.msea.2015.11.030
Børvik, T. et al. (2005). Strength and ductility of Weldox 460 E steel at high strain rates, elevated temperatures and various stress triaxialities. Engineering Fracture Mechanics, 72, s. 1071–1087.
Brar, N. S. & Joshi, V. S. (2012). Anisotropic effects on constitutive model parameters of aluminum alloys. AIP Conference Proceedings, 1426 (1), s. 72–75. doi:10.1063/1.3686224
Brar, N. S., Joshi, V. S. & Harris, B. W. (2009). Constitutive model constants for Al7075-T651 and Al7075-T6. AIP Conference Proceedings, 1195 (1), s. 945–948. doi:10.1063/1.3295300
Cai, M.-C., Niu, L.-S., Ma, X.-F. & Shi, H.-J. (2010). A constitutive description of the strain rate and temperature effects on the mechanical behavior of materials. Mechanics of Materials, 42 (8), s. 774–781. doi:10.1016/j.mechmat.2010.06.006
Chen, G., Ren, C., Qin, X. & Li, J. (2015). Temperature dependent work hardening in Ti–6Al–4V alloy over large temperature and strain rate ranges: Experiments and constitutive modeling. Materials & Design, 83, s. 598–610. doi:10.1016/j.matdes.2015.06.048
Chocron, S., Erice, B. & Anderson, C. E. (2011). A new plasticity and failure model for ballistic application. International Journal of Impact Engineering, 38 (8–9), s. 755–764. doi:10.1016/j.ijimpeng.2011.03.006
Choung, J., Nam, W., Lee, D. & Song, C. Y. (2014). Failure strain formulation via average stress triaxiality of an EH36 high strength steel. Ocean Engineering, 91, s. 218–226. doi:10.1016/j.oceaneng.2014.09.019
Hirsch, J. & Al-Samman, T. (2013). Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Materialia, 61 (3), s. 818–843. doi:10.1016/j.actamat.2012.10.044
Keshavarz, A., Ghajar, R. & Mirone, G. (2014). A new experimental failure model based on triaxiality factor and Lode angle for X-100 pipeline steel. International Journal of Mechanical Sciences, 80, s. 175–182. doi:10.1016/j.ijmecsci.2014.01.007
Kupchella, R., Stowe, D., Xiao, X., Algoso, A. & Cogar, J. (2015). Incorporation of material variability in the Johnson Cook model. Procedia Engineering, 103, s. 318–325. doi:10.1016/j.proeng.2015.04.053
Senthil, K., Iqbal, M. A., Chandel, P. S. & Gupta, N. . (2017). Study of the constitutive behavior of 7075-T651 aluminum alloy. International Journal of Impact Engineering, 0. doi:10.1016/j.ijimpeng.2017.05.002
Thepsonthi, T. & Özel, T. (2015). 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: Experimental validations on chip flow and tool wear. Journal of Materials Processing Technology, 221, s. 128–145. doi:10.1016/j.jmatprotec.2015.02.019
Valoppi, B., Bruschi, S., Ghiotti, A. & Shivpuri, R. (2017). Johnson-Cook based criterion incorporating stress triaxiality and deviatoric effect for predicting elevated temperature ductility of titanium alloy sheets. International Journal of Mechanical Sciences, 123 (January), s. 94–105. doi:10.1016/j.ijmecsci.2017.02.005
Wang, B. & Liu, Z. (2016). Evaluation on fracture locus of serrated chip generation with stress triaxiality in high speed machining of Ti6Al4V. Materials and Design, 98, s. 68–78. doi:10.1016/j.matdes.2016.03.012
Yuan, Z. et al. (2013). A modified constitutive equation for elevated temperature flow behavior of Ti-6Al-4V alloy based on double multiple nonlinear regression. Materials Science and Engineering A, 578, s. 260–270. doi:10.1016/j.msea.2013.04.091
Zhang, D. N., Shangguan, Q. Q., Xie, C. J. & Liu, F. (2015). A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy. Journal of Alloys and Compounds, 619, s. 186–194. doi:10.1016/j.jallcom.2014.09.002
Zhou, Z., Kuwamura, H. & Nishida, A. (2011). Effect of micro voids on stress triaxiality-plastic strain states of notched steels. Procedia Engineering, 10, s. 1433–1439. doi:10.1016/j.proeng.2011.04.238
Madde Ölçümleri
Metrics powered by PLOS ALM
Refback'ler
- Şu halde refbacks yoktur.
Telif Hakkı (c) 2018 Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Tarayan Veri Tabanları