DETERMINATION OF EQUIVALENT CIRCUIT PARAMETERS OF INDUCTION MOTORS BY USING HEURISTIC ALGORITHMS

Murat SELEK, Hakan TERZİOĞLU

Öz


ABSTRACT: Induction motors (IMs) are commonly used in industry due to the fact that they are simple, economic, durable, maintenance-free and they can run in every environmental conditions. Non-linear model and time varying parameters of IMs make it quite difficult to develop their mathematical models. In high performance applications, it is necessary to determine these parameters that affect driving technique.  In this study, when induction motor (IM) was started with continuous and discrete signals, the effects on the motor equivalent circuit parameters of these operating states were investigated. Differential Evolution Algorithm (DEA) and Particle Swarm Optimization (PSO) were used to investigate and determine the changes in parameters and performance. Equivalent circuit parameters were determined on two IMs with 2.2kW and 5.5kW. In this study, it was seen that Differential Evolution Algorithm (DEA) and Particle Swarm Optimization (PSO) determined electrical equivalent circuit parameters of IM with minimum 0,07% error and minimum 0,28% error, respectively.

Anahtar Kelimeler


Induction motor, Particle swarm optimization, Differential evolution algorithm, Equivalent circuit parameters of induction motor, Vector control

Tam Metin:

PDF (English)

Referanslar


Akbulut, İ., 2009,"Parçacık Sürü Optimizasyonu ile Anten Tasarımı", Tez (Yüksek Lisans) İstanbul Teknik Üniversitesi Bilişim Enstitüsü.

Akkoyunlu, M.C., Engin, O., 2011, ”Kesikli harmoni arama algoritması ile optimizasyon problemlerinin çözümü: literatür araştırması”, J. Fac.Eng.Arch. Selcuk Univ., 26(4), 140-148.

Arslan, M., Çunkaş, M., Sağ, T., 2012, "Determination of induction motor parameters with differential evolution algorithm", Neural Computing and Applications, 21(8), 1995-2004.

Çolak, İ., "Elektrik Makinaları – 2", Seçkin Yayıncılık, Eylül 2014, 3. Baskı, 352 Sayfa.

Eldem, H., 2014, "Karınca Koloni Optimizasyonu (KKO) ve Parçacık Sürü Optimizasyonu (PSO) Algortimaları Temelli Bir Hiyerarşik Yaklaşım Geliştirilmesi", Tez (Yüksek Lisans) Bilgisayar Mühendisliği, Selçuk Üniversitesi: Fen Bilimleri Enstitüsü.

Jirdehi, M.A., Rezaei, A., 2014, "Parameters estimation of squirrel-cage induction motors using ANN and ANFIS",Alexandria Engineering Journal, 55(1), 357-368.

Kampisios, K., Zanchetta, P., Gerada, C., Trentin, A., 2008, "Identification of induction machine electrical parameters using genetic algorithms optimization", Industry Applications Society Annual Meeting IAS '08. IEEE, 1-7, 5-9 October 2008, Edmonton, Alberta, Canada.

Karaboğa, D., 2014, "Yapay Zeka Optimizasyon Algoritmaları".

Király, I.., Žarko, D., 2016, "Extended space vector method for calculation of induction motor parameters", Electric Power Components and Systems, 44(8), 928-940.

Kiranyaz, S., Ince T., Gabbouj M., 2014, "Multidimensional particle swarm optimization for machine learning and pattern recognition", Adaptation, Learning, and Optimization, Springer-Verlag Berlin Heidelberg, 15.

Laowanitwattana, J., Uatrongjit, S.,2015, "Induction motor states and parameters estimation ,using Extended Kalman Filter with reduced number of measurements". Electrical Machines and Systems (ICEMS), 2015 18th International Conference on. 1631-1635, 25-28 October2015, Pattaya City, Thailand.

Mohamed, Y.S., Hasaneen, B.M., Elbaset, A.A., Hussein, A.E., 2011, "Recursive least square algorithm for estimating parameters of an induction motor", Journal of Engineering Sciences, Assiut University, 39(1), 87-98.

Nutu, C.S., Popescu, M.O., 2016, "Applying Taguchi method for control parameters of an induction motor", University Politehnica Of Bucharest Scientific Bulletin Series C-Electrical Engineering And Computer Science, 78(2), 203-208.

Özcan, E.C., Erol, S., 2013, ” Türkiye’de elektrik üretim planlaması için çok amaçlı bir karışık tam sayılı doğrusal programlama modeli”, Selcuk Univ. J. Eng. Sci. Tech., 1(1), 41-54.

Price, K., Storn, R.M., Lampinen, J.A., 2006, "Differential evolution: a practical approach to global optimization", Springer; 2005 edition (December 22, 2005), 539 pages.

Sadasivan, J., Mammen, O., 2011, "Genetic algorithm based parameter identification of three phase induction motors", Reproduction, 31(10), 51-56.

Sağ, T., Çunkaş, M., 2009, ” A tool for multiobjective evolutionary algorithms”, Advances in Engineering Software, 40, 902-912.

Storn, R., Price, K., 1997, "Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces", Journal of global optimization, 11(4), 341-359.

Terzioğlu, H., Herdem, S., Bal, G., 2013, ” The minimization of torque ripples of segmental type switched reluctance motor by particle swarm optimization”, International Journal of Intelligent Systems and Applications in Engineering,4,199-203.

Terzioğlu, H., Kazan, F.A., Arslan, M.,"Asenkron ve Senkron Makineler", Mesleki Akademi, 2014, 246 Sayfa.

Tofighi, E.M., Mahdizadeh, A., Feyzi, M.R., 2013, "Online estimation of induction motor parameters using a modified particle swarm optimization technique", Industrial Electronics Society, IECON 2013 - 39th Annual Conference of the IEEE, 3645-3650, 10-14 Nov 2013, Vienna, Austria.


Madde Ölçümleri

Ölçüm Çağırılıyor ...

Metrics powered by PLOS ALM

Refback'ler

  • Şu halde refbacks yoktur.


Telif Hakkı (c) 2017 Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Tarayan Veri Tabanları

   ResearchBib 中国知网BASE Logo googleDirectory of Research Journals Indexing LogoOnline Access to Research in the EnvironmentDTUbroadcastlogo PBN - BETA versionjournal tocs uk ile ilgili görsel sonucuFind in a library with WorldCatDiscovery: Library search made simple. Return to JournalSeek Homejatstech ile ilgili görsel sonucuExLibris header imageStanford University Libraries