Fatih SARI


Recently, for ensuring human life and safety, routing and intervening emergency vehicles as soon as possible an important subject. Ambulance, firefighter, police and other emergency vehicles are the main object of the intervention. Reaching the emergency area as soon as possible is important for saving human life and preventing economic loss. Directing and routing emergency vehicles from the moment they receive an emergency call to the event location must be considered carefully. In this study, ensuring the shortest response time for the emergency vehicles, obstacles like speed bumps, traffic lights, parking status of the streets, railroad crossings and crossroads which reduce the speed of emergency vehicles and increasing the intervention time are detected. In order to determine the effect of obstacles, a new Segment Effect Value (SEV) formula is developed. Values are assigned to the street segments according to obstacles in particular streets. SEV formula makes possible to determine the routes that provides the shortest intervention time. Results are compared with the shortest route and the shortest time route.


Emergency Response Time, Network Analyst, Geographical Information Systems, Navigation systems

Full Text:



Ahuja, R., Orlin, K., James, B., Pallottino, S., Scutella, M. G., 2002, Dynamic Shortest Paths Minimizing Travel Times and Costs, MIT Sloan Working Paper; No. 4390-02.

Aktas, S.G., Swalehe, M., 2016, “Dynamic Ambulance Deployment to Reduce Ambulance Response Times using Geographic Information Systems: A Case Study of Odunpazari District of Eskisehir Province, Turkey”, Procedia Environmental Sciences, Vol. 36, pp. 199 – 206.

Altınbaş, K. H., Bilir, N., 2001, Ambulance Times of Ankara Emergency Aid and Rescue Services Ambulance System”, European Journal of Emergency Medicine, Vol. 8, pp. 43-50.

Ateş, S., Coşkun, Z. M., Aydınoğlu, A. Ç., “Coğrafi Bilgi Sistemleri ile En Uygun Ambulans Yerlerinin Belirlenmesi”, 13. Türkiye Harita Bilimsel ve Teknik Kurultayı, Ankara, 18-22 Nisan 2011.

Bandyopadhyay, M., Singh, V., 2016, “Development of Agent Based Model For Predicting Emergency Response Time”, Perspectives in Science, Vol. 8, pp. 138—141.

Blackwell, T. H. Kaufman, J . S., 2001, “Response Time Effectiveness: Comparison of Response Time and Survival in an Urban Emergency Medical Services System”, Academic Emergency Management, Vol. 9, pp. 288-295.

Brown, L.H., Whitney, C.L., Hunt, R.C., Addario, M., Hogue, T., 2000, “Do Warning Lights and Sirens Reduce Ambulance Response Times?”, Prehospital Emergency Care, Vol. 4, pp. 70–74.

Campbell A, M., Vandenbussche D., Hermann W., 2008, “Routing for Relief Efforts”, Transportation Science, Vol. 42, pp. 127–145.

Haghani, A., H. Hu., Q. Tian., “An Optimization Model for Real-Time Emergency Vehicle Dispatching and Routing”. In: the 82nd Annual Meeting of the Transportation Research Board, Washington, D.C., 12-16 January 2003.

Ho, J., Casey, B., 1998, “Time Saved with Use of Emergency Warning Lights and Sirens During Response to Requests for Emergency Medical Aid in Urban Environment”, Annals of Emergency Medicine, Vol. 32 (5), pp. 585–588.

Ho, J., Lindquist, M., 2001, “Time Saved with Use of Emergency Warning Lights and Siren While Responding to Requests for Emergency Medical Aid in A Rural Environment”, Prehospital Emergency Care, Vol. 5, pp. 159–162.

Huang, D., Chu, X., Mao Z., 2012, “A Simulation Framework for Emergency Response of Highway Traffic Accident”, Procedia Engineering, Vol. 29, pp. 1075 - 1080.

Kerstin P., Jan, P., Jörgen, J., Gun N., 2011, “Time Saved with High Speed Driving of Ambulances”, Accident Analysis and Prevention, Vol. 43(3), pp. 818–822.

Kobusingye OC, Hyder AA, Bishai D, Joshipura M, Hicks ER, Mock C., 2010, Emergency Medical Services,New York: John Wiley & Sons Ltd; 2010.p.167-. 169. 17.

Konstantinos G. Zografos., George M. Vasilakis., Ioanna M. Giannouli., 2000, “Methodological Framework for Developing Decision Support Systems (DSS) for Hazardous Materials Emergency Response Operations”, Journal of Hazardous Materials, Vol. 71 (1–3.7), pp. 503–521.

Lam, S.S., Zhang, J., Zhang, Z. C., Oh, H. C., Overton, J., Ng, Y. Y., Ong, M. E., 2015, “Dynamic Ambulance Reallocation for The Reduction of Ambulance Response Times Using System Status Management”, The American Journal of Emergency Medicine, Vol. 33, pp. 159-166.

Liu, H., Hall, R., 2002, W. INCISIM: User’s Manual. California Path Research Report; UCB-ITS-PWP-2000-15.

Minciardi, R., Sacile, R., Trasforini, E., 2007, “A Decision Support System for Resource Intervention in Real-Time Emergency Management”, International Journal of Emergency Management, Vol. 4 (1), pp. 59-71.

Mohd, S., Mohd, I., Syed, M., 2008, “Ambulance Response Time and Emergency Medical Dispatcher Program: A study in Kelantan, MALAYSIA”, Southeast Asian Journal of Tropical Medicine and Public, Vol 39 (6).

Narad, R. A., Iesbock, K. R., 1999, “Regulation of Ambulance Response Time in California”, Prehospital Emergency Care, Vol. 3, pp. 131-135.

Ong M, E., Ng FS., Overton J., Yap S., Andresen D., Yong DK., Lim SH., Anantharaman V., 2009, “Geographic Time Distribution of Ambulance Calls in Singapore: Utility of Geographic Information System in Ambulance Deployment”, Annals Academy of Medicine, Vol. 38, pp.91-94.

Ozbay, K., Bartin, B., 2003, “Incident Management Simulation”, Simulation, Vol. 79(2), pp. 69-82.

Paraskevi S. Georgiadoua, Ioannis A. Papazoglou, Chris T. Kiranoudisa, Nikolaos C. Markatosa., 2010, “Multi-Objective Evolutionary Emergency Response Optimization for Major Accidents”, Journal of Hazardous Materials, Vol. 178, pp. 792–803.

Peter S, J., Hall, G. B., 1999, “Assessment of Ambulance Response Performance Using A Geographic Information System”, Social Science & Medicine, Vol. 49, pp. 1551-1556.

Stefan, R., Walter,.G., 2014, “A Math-Heuristic for The Warehouse Location–Routing Problem in Disaster Relief”, Computers & Operations Research, Vol. 42, pp. 25 – 39.

Yoon, S,W., Velasquez, J.D., Partridge, B.K., Nof., S,Y., 2008, “Transportation Security Decision Support System for Emergency Response: A Training Prototype”, Decision Support Systems, Vol. 46, pp. 139–148.

Zhang, Z., He, Q., Gou, J., Li,X., 2016, “Performance Measure for Reliable Travel Time of Emergency Vehicles, Transportation Research Part C, Vol. 65, pp. 97–110.

Ziliaskopoulos, A., H. Mahmassani., 1993, “Time Dependent, Shortest-Path Algorithm for Real-Time Intelligent Vehicle Highway System Applications”, Transportation Research Record, 1480; pp. 94-100

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2017 Selcuk University Journal of Engineering, Science and Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 Indexed in Databases


中国知网BASE LogogoogleDirectory of Research Journals Indexing LogoOnline Access to Research in the EnvironmentDTUbroadcastlogo PBN - BETA versionjournal tocs uk ile ilgili görsel sonucuFind in a library with WorldCatDiscovery: Library search made simple.Return to JournalSeek Homejatstech ile ilgili görsel sonucu  ExLibris header imageStanford University Libraries

Coordinator of Selcuk University Scientific Journals