ATM NAKİT İKMAL OPTİMİZASYONUNDA ASİMETRİK DESTEK VEKTÖR REGRESYON TAHMİN MODELİ YAKLAŞIMI
Öz
Bankacılık ve finans sektöründe ATM nakit ikmal problemi oldukça önemlidir. Bu problemin çözümü için en düşük tahmin hata oranını veren tahmin modelinin seçilmesinin yanı sıra minimum ikmal maliyetlerini veren optimizasyon modelinin bulunması da büyük bir öneme sahiptir. Bu çalışmada, yeni bir asimetrik tahmin modeli ve bu model ile entegre olarak çalışan, bir başka deyişle, tahmin ve optimizasyondan oluşan, iki aşamalı süreci tek bir aşamaya indiren ve nakit ikmal maliyetlerini minimize eden bir optimizasyon modeli önerilmiştir. Aynı zamanda diğer tahmin modelleri ile maliyet performans karşılaştırılması gerçekleştirilmiştir.
Anahtar Kelimeler
Tam Metin:
PDFReferanslar
Andrawis, R. ve diğ., 2011, “Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition”, International Journal of Forecasting 27, ss. 672-688.
Armenise, R. ve diğ., “A generative solution for ATM Cash Management”, 2010 International Conference of Soft Computing and Pattern Recognition IEEE, ss.349-356, 2010.
Brentnall, A.R., 2010, “Predictive-sequential forecasting system development for cash machine stocking”, International Journal of Forecasting, 26, ss.764-776.
Casto, J., 2009, “A stochastic programming approach to cash management in banking”, European Journal of Operational Research 192, ss. 963-974.
Darwish, S.M., 2013, “A methodology to improve cash demand forecasting for ATM Network”, International Journal of Computer and Electrical Engineering 5, ss. 405-409.
Ekinci, Y. Ve diğ.2015, “Optimization of ATM cash replenishment with group-demand forecasts”, Expert Systems with Applications 42, ss. 3480-3490.
Erdal, H., İ., 2011, “Destek Vektör Makineleri ile Tahmine Dayalı Modelleme ve Bir Uygulama”, Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü.
Friedman, J. H., 1991, “Multivariate adaptive regression splines”, The Annals of Statistics, 19, Number 1, ss.1-67.
Hsiao, C. ve diğ., “A Rough-based Robust Support Vector Regression Network for Function Approximation” 2011 IEEE International Conference on Fuzzy Systems,Taipei, Taiwan, ss. 2814-2818, 27-30 Haziran, 2011.
Huang, X. ve diğ., 2014, “Asymmetric v-tube support vector regression”, Computational Statistics and Data Analysis 77, ss.371-382.
Huang, W. & Shen, L., 2008, “Weighted support vector regression algorithm based on data description”, 2008 ISECS International Colloquium on Computing, Communication, Control and Management, IEEE, ss. 250-254.
Li, Z. ve diğ., “Adaptively Weighted Support Vector Regression for Financial Time Series Prediction”, 2014 International Joint Conference on Neural Networks (IJCNN), Pekin,Çin, ss. 3062-3065, July 6-11, 2014.
Liu, J. ve diğ., 2013, “Nuclear power plant components condition monitoring by probabilistic support vector machine”, Annals of Nuclear Energy 56, ss. 23-33.
Lu, C. J., 2014, “Sales forecasting of computer products based on variable selection scheme and support vector regression”, Neurocomputing, 128, 491-499.
Mei, L. & Zhang, S., 2008, “A new weighted support vector machine for regression and its parameters optimization”, Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence Lecture Notes in Computer Science Volume, Cilt No. 5227, ss. 597-604.
Nelder J.A, Mead R. A simplex method for function minimization. Comput J. 1965;7(4).
Ngo, T-T. ve diğ., 2015, “The BFGS Method for estimating the interface temperature and convection coefficient in ultrasonic welding”, International Communications in Heat and Mass Transfer,69, 66-75.
Ormándi, R., “Variance Minimization Least Squares Support Vector Machines for Time Series Analysis”, Data Mining, ICDM’08, Eight IEEE International Conference, ss. 965-970, 2008.
Rajan, A., Malakar, T., 2015, “Optimal reactive power dispatch using hybrid Nelder-Mead simplex based firefly algorithm”,Electrical Power and Energy Systems, 66, 9-24.
Saggaf, U.M. ve diğ., 2015, “The q-Least Mean Squares Algorithm”, Signal Processing 111, ss.50-60.
Sayed, A.H., 2003, “Fundamentals of Adaptive Filtering”, Wiley-Interscience, New York.
Simutis, R. ve diğ., “Cash demand forecasting for ATM using neural networks and support vector regression algorithms”, In 20th EURO mini conference – continuous optimization and knowledge-based technologies, Neringa, LITHUANIA, , (ss. 416–421) , 20–23 Mayıs, 2008.
Stockman, M. ve diğ., “Asymmetrical and Lower Bounded Support Vector Regression for Power Estimation”, Energy Aware Computing (ICEAC), 2011 International Conference, ss. 1-6, 30 Kasım-2 Aralık 2011.
Stockman, M. ve diğ.,“An Asymmetrical and Quadratic Support Vector Regression Loss Function for Beirut Short Term Load Forecast”, Systems Man and Cybernetics (SMC), 2012 IEEE International Conference, ss. 651-656, 14-17 Ekim 2012.
Taieb, S. B. ve diğ., 2012, “A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition”, Expert Systems with Applications, Cilt No. 39, ss. 7067-7083.
Teddy, S.D., Ng, S.K., 2011, “Forecasting ATM Cash Demands using a local learning model of cerebellar associative memory network”, International Journal of Forecasting 27, ss.760-776.
Teo, C.H. ve diğ., 2010, “Bundle Methods for Regularized Risk Minimization”, Journal of Machine Learning Research, Cilt No. 11, January, ss. 311-365.
Tiryaki, S. ve diğ., 2014, “Comparison of artificial neural network and multiple linear regression models to predict optimum bonding strength of heat treated woods”, International Journal of Adhesion & Adhesives 55, ss. 29-36.
Vapnik, V., 1999, The Nature of Statistical Learning Theory, Springer.
Vapnik, V., 2000, The Nature of Statistical Learning Theory, Springer, New York.
Venkatesh, K. ve diğ., Van den Poel, D., 2014, “Cash demand forecasting in ATM’s by clustering and neural networks”, European Journal of Operational Research 232 , ss. 383-392.
Wang, Y., Lee, T.H., 2014, “Asymmetric loss in the Greenbook and the Survey of Professional Forecasters”, International Journal of Forecasting 30, ss. 235-245.
Wichard, J.D., 2011, “Forecasting the NN5 time series with hybrid models”, International Journal of Forecasting 27, ss.700-707.
Zhang, Y.M., Qi, W.G., “Interval forecasting for heating load using support vector regression and error correcting Markov Chains”, Proceedings of the Eighth International Conference on Machine Learning and Cybernetics, Baoding, ss. 1106-1110, 12-15 Temmuz 2009.
DOI: https://doi.org/10.15317/Scitech.2016218520
Madde Ölçümleri
Metrics powered by PLOS ALM
Refback'ler
- Şu halde refbacks yoktur.
Telif Hakkı (c) 2016 Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Tarayan Veri Tabanları