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ABSTRACT: Due to the large size of shape databases, importance of effective and robust method in 

shape retrieval has been increased. Researchers mainly focus on finding descriptors which is suitable for 

rigid models. Retrieval of non-rigid models is a still challenging field which needs to be studied more. 

For non-rigid models, descriptors that are designed should be insensitive to different poses. For non-

rigid model retrieval, we propose a new method which first divides a model into clusters using geodesic 

distance metric and then computes its descriptor using the area of these clusters. A skeleton-based K-

means clustering method is utilized for dividing the model into clusters.  Each cluster is represented by 

an area based descriptor which is invariant to scale and orientation. Articulated objects from human to 

animals are employed in this study’s experiments for the validation of the proposed retrieval algorithm. 
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Üç Boyutlu Çözüm Ağları için K-Means Kümeleme Tabanlı Şekil Araması 

 

ÖZ: Şirketlerin veri tabanlarında çok fazla şekil bulunmaktadır. İstenilen şekillerin bu veri tabanından 

bulunup getirilmesi için etkili ve güçlü şekil arama metodlarının kullanılması gerekmektedir. 

Araştırmacılar genelde rijit (esnemeyen) modellere uygun geometrik tanımlayıcılar üzerine 

odaklanmışlardır. Rijit olmayan modellerin bulunması daha zor olmakta ve bu konuda daha çok 

çalışılması gerekmektedir. Rijit olmayan modeller için tasarlanan geometrik tanımlayıcılar değişik 

model pozlarında (insan modeli için yürüme, oturma gibi pozlar) çalışabilmesi gerekmektedir. Rijit 

olmayan model araması için, öncelikle model jeodezik metrik kullanarak parçalara bölünür. Sonra her 

bir parçanın alanı toplam alana bölünerek geometrik tanımlayıcı hesaplar. İskelet-bazlı K-means metodu 

kullanarak model parçalara ayrılmıştır. Her parça alan-bazlı tanımlayıcılar kullanılarak tanımlanmıştır. 

Bu tanımlayıcıların ölçek ve oryantasyon değişikliklerine hassasiyeti yoktur. Çalışmanın testlerinde 

insandan hayvanlara eklemli canlılar kullanılmış, önerilen model arama metodunun performansı 

doğrulanmıştır. 

 

Anahtar Kelimeler: Jeodezik uzaklık, K-means kümeleri, Çözüm ağı iskeletleri, Model bulma,  

 

INTRODUCTION 

 

With the increase in the number of 3-D models in the internet or company databases, accessing 

desired models from databases in a shorter time becomes an open issue for research. In the last years, 

some 3D model search engines have been designed for accessing 3D models in databases consisting of 

huge data sets. Some famous search engines are Princeton University search Engine (Min et al., 2003), 

Taiwan National University shape retrieval engine (Shen et al., 2003) and FOX-Mier shape retrieval 

engine (Ansary et al., 2007). In shape retrieval, model features should be found which describe the model 

well which are called shape descriptors. Some of the descriptors proposed in literature are accurate, but 
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utilizing them in real time is time consuming. On the other side, there are some descriptors which are 

fast, but not robust. Researchers try to design a descriptor and balance the speed and robustness at the 

same time. 

In a shape retrieval engine, an input model, called query, is selected and similar models to the query 

are listed among the models in model database. Utilizing directly the retrieval algorithm on 3D models 

in database is time consuming, therefore we first have a preprocessing step called off-line step in which 

descriptors for the query and datasets are calculated. Comparison between the query descriptor and the 

descriptors for models of datasets are then made in an on-line step. Search engine retrieves all similar 

models to the query via using pre-computed descriptors. The descriptor suggested in this paper is 

insensitive to different model poses and is invariant when the model is rotated, translated or scaled. 

The proposed algorithm consists of three main steps. First, a 3D mesh model is partitioned into 

clusters via a K-means clustering technique. Geodesic distance is utilized during the clustering step. As 

K-means algorithm is sensitive to the initial seeds given, K-Furthest seeds are computed by means of the 

mesh skeleton. Model descriptor is defined based on surface area of the clusters which is not sensitive to 

different model poses. Models are finally retrieved using their descriptors. We form a model database 

for the validation of the proposed algorithm which consists of the models especially from Princeton 

University Benchmark. 

 

RELATED WORKS 

 

3D shape retrieval methods can be divided into three main categories: Feature-based techniques, 

graph-based techniques and view-based techniques. Here, we outline some of the proposed techniques 

in these categories. Paquet et al. (2000) used cord histograms. Cords were defined as the connecting 

center of the model to the center of each triangle faces. Zhang and Chen (2001)  used surface properties 

like area, volume and istatistical  moment to create global feature descriptors. Convex-hull based 

descriptors were introduced by Corney et al. (2002). Hull crumbliness, hull packing and hull 

compactness were defined as descriptors in their paper. Extended Gaussian Image (EGI) method was 

defined for the first time by Horn (1984). In this histogram-based method, normal vector of each triangle 

was mapped on the Gaussian sphere. Complex extended Gaussian image (CEGI) was then generalized 

by Kang and Ikeuchi (1991) which took the distance of faces to the origin also into consideration. 

Kazhdan et al. (2004) used a mirroring descriptor in their work. They calculated global descriptor by 

measuring the reflective symmetry of each plane of 3-D model according to the position of model’s 

center. Osada et al.(2002) brought distribution concept to global dissimilarity descriptors. They first 

extracted descriptor based on area, volume or distance. Difference of distributions then showed the 

amount of dissimilarity between 3D models. Ohbuchi et al. (2002) created shape histograms along with 

the principal axis of 3D model. They used properties such as the moment of inertia, average distance 

from surface to the principal axis and distance variation to the principal axis for creating histograms. Ip 

et al. (2002) applied the shape distribution approach for the CAD models by reforming Osada’s D2 

function. This method was only useful for volume models and not for soup models. Sector and shells 

based disstribution histograms were used by Ankerst et al. (1999). 3D models were divided into different 

spatial parts by using singly concentric shells and sectors. These sector and shell unites were 

corresponding with each bin in the shape histogram. Vranic et al. (2001) presented a ray-based 

descriptor which first found the spherical extent function of the model and then created descriptor by 

calculating spherical harmonics of that function. The method was not rotation invariation and needs 

pose normalization. Kazhdan et al. (2003) described a rotation invariant method for representing 3D 

models. In this method, by means of concentric spheres, spherical harmonic was constructed.  

For graph-based techniques, reeb graphs and skeleton-based methods are the most popular. 

Mathematically, reeb graphs are a kind of skeleton which descripe a 3D model topologically by using a 

scalar function. In reeb graphs, quotient function, f, play an important role for creating graphs. Biasotti et 

al. (2003) showed that applying various quotient function  leaded to different reeb graphs and choosing 
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suitable quotient function has crucial effect in matching result. Hilaga et al. (2001) used integral geodesic 

distance as a quotient function. Bespalov et al. (2003) implemented Hilaga’s procedure on solid models. 

They concluded that reeb graph matching method was sensitive to topology of 3D models and more 

work should be done to inhance the method. For skeleton-based techniques, Sundar et al. (2003) used 

models skeleton for retrieving the models. They first voxelized 3D shape object and they then used  

Gagvani’s Volume Thinning algorithm (Gagvani and Silver, 1999). Sundar et al. (2003) tried to find 

similarity of  two 3D shapes by comparing their skeletal graph by detecting the maximum cardinality, 

minimum weight matching between two corresponding graph. Funkhouser et al. (2003) used a view 

based technique for shape retrieval. They applied a two dimentional sketch as a query. Chen et al. (2003) 

and Shen et al. (2003) utilized a view-based technique for retrieving 3D objects by noticing the fact that 

3D models are similar if they look same from all points of view. 

Our technique takes different approach than the shape retrieval techniques in the literature which 

utilize a single cluster (i.e., whole model). However, we generate different clusters and the descriptor is 

defined on these clusters. We believe that it is advantageous because main focus of researchers in 

previous works was to finding descriptors which represent 3-D model globally. One of the weak point is 

that some of the retrieved models for the input model (query) are completely different, but they are 

globally similar to the query according to the descriptor used. To avoid this problem, we proposed a 

new method which divides models into clusters first and computes then descriptors on these clusters. 

Furthermore, using geodesic metric for K-means clustering rather than Euclidean metric makes our 

method insensitive to different poses. 

 

PROPOSED METHOD 

 

Overview 

 

In this section, we describe the flow of the proposed method. Figure 1 illustrates the main steps of 

the proposed algorithm. The skeleton of a given 3D mesh model is first computed. Two furthest points 

on the skeleton are then found. Two corresponding points on the mesh for these two points is calculated 

which are assigned as the first two seed points that will be used in the K-means clustering algorithm. 

Other k-2 seed points are then found. In the next step, K-means algorithm is utilized to partition the mesh 

into vertex clusters by using k seed points. K is a user-defined integer input. The mesh model is 

simplified using an area based shape descriptor which is a fingerprint of the model. The descriptor 

carries the important information of the model which is used to compare it with other shapes. Therefore, 

similarity rate between models is computed based on this shape descriptor. 

 
 

Figure 1. Flow of the proposed technique 
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K-means Clustering 

 A mesh, M, is partitioned into k sub-meshes or clusters, { }. A cluster,  consists of a 

set of vertices and a cluster center (or centroid), , where  is integer between and . Furthermore, any 

two cluster,  and , do not share the same vertex (i.e., ). To find clusters, objective 

function in Formula 1 is utilized which aims to minimize the total sum of the squared distance for all 

vertices in each cluster with its centroid center. 

                   (1) 

Exact solution for this problem is NP hard. Lloyd’s clustering technique (Lloyd, 1982) is used 

extensively by many scientists and researchers in different fields (Herwig et al., 1999; Agarwal and 

Nabil, 2004; Gibou and Fedkiw, 2005) which our technique utilize as well. Partitioning and cluster center 

update phases are iterated until the cluster centers do not move anymore or if their move is negligible. 

Pseudo-code for the Lloyd’s K-means clustering technique is as follows: 

1. Select k vertices randomly in the mesh as initial centroids or seeds 

2. Assign each mesh vertex to the closest centroid. 

3. Compute mean of each cluster and select the vertex in the cluster that is closest to the mean 

as new centroid. 

4. Iterate line 2 and 3. 

5. If the centroid positions do not change anymore, algorithm stops. 

6. K number of clusters are obtained. 

 K-means clustering has a rather high speed, however this algorithm is sensitive to initial seed points 

(i.e., centroids) or initial centers. We tried to solve this problem by making use of mesh skeleton which 

will be described in the next section. Another important issue is to use of an appropriate distance metric. 

Geodesic distance is utilized to compute distance between two points which is the shortest path between 

the points on the surface model. Figure 2 shows Geodesic and Euclidean distance on a 3D mesh model. 

 

 

                                    
Figure 2. Geodesic and Euclidean distance on the 3D model 

 

Skeleton-based K-means Partitioning 

Weak point of K-means clustering is its sensitivity to the selected initial seed points. Shape retrieval 

method that will be detailed in Section 3.4 closely depends on the quality of generated clusters. Our aim 

is to cluster models in the way that clusters are similar in similar models. To achieve this, initial seed 

points should be approximately at the same position for similar models. One way is to select k furthest 

points on the mesh. This has, however, high computational cost for a model with a large number of 

vertices if Geodesic distance computation is utilized. Suppose we have a 3D model with n mesh vertices. 



118                                                                                                                         M. REZAEI, E. GUNPINAR 

  

 

For finding two furthest vertices in the mesh, Geodesic distance between  vertex pairs should be 

checked. The 3D models used in our work have mostly more than 5000 points and finding two furthest 

vertex for a model can take even a few days. To overcome this problem, we first create the skeleton of 3D 

model and then compute two furthest points in the skeleton which can help in finding two furthest 

points in the mesh. The problem of finding two furthest points can be solved just in a few seconds even 

for models with 10000 points. 

There are several techniques (Au et al., 2008, Dey and Sun, 2006; Gagvani and Silver, 1999; Sundar et 

al. 2003; Tagliasacchi et al., 2012) existing in literature to compute the skeleton of a given shape 

represented using 3D mesh. The technique (Tagliasacchi et al., 2012) of Andrea Tagliasacchi et al.. is 

utilized to compute the skeleton for a shape represented using 3D mesh because of its high 

computational speed and the ability to produce good results. The method creates skeleton curve by 

using Mean Curvature Flow (MCF), which is negative gradient flow of the area. Area of the mesh becomes 

smaller by iteratively contracting mesh vertices towards the positions where curvature is maximum. 

Another advantage of the MCF-based methods is that it can automatically compute skeleton by just 

adjusting a few number of user-defined parameters (Au et al., 2008; Tagliasacchi et al., 2012).  

 The computed skeleton is represented using an undirected graph with positive weights. A graph G 

= (V, E) consists of a set of vertices V and a set of edges E ⊆ V × V which are unordered pair of V. In 

undirected graphs all the edges are bidirectional. Figure 3 illustrates a undirected graph. 

 

                                                           
                             Figure 3. An undirected graph with 15 vertices and 15 edges. 

 

The problem to find two furthest points in an undirected graph can be formulated as a single-source 

shortest path problem which can be solved by the Dijkstra’s algorithm (Dijkstra, 1959). Let s and t be the 

source and target vertex, respectively. All possible shortest paths in the graph are computed first. A path 

connecting two vertices (s and t) with maximum weight (sum of all the edges of shortest path) will then 

be selected. These two vertices are the two furthest vertices in the skeleton. A pseudo-code for finding 

the shortest path from a source vertex, s∊V, to another vertices, v∈V, is given in below: 
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function Dijkstra(Graph, source): 

       for each vertex v in Graph:  // setting all vertex except source vertex to infinity 

                  set dist[v] to infinity 

                  set previous[v] undefined 

          end for 

          set dist[source] to 0        // distance from source vertex to itself is zero 

          Q : the set of all vertices of Graph 

          while Q is not empty  // so long as queue is not empty 

                 set u to the vertex in Q with smallest distance in dist[u] 

                 remove u from Q  

                 if dist[u] is infinity 

                          break            // all remaining vertices are inaccessible from source 

                  end if 

                  for each neighbor v of u: 

                  W= dist[u] + dist_between(u, v) ; 

                  if W < dist[v] 

                  dist[v] := W ; 

                  previous[v] := u ; 

                  decrease-key v in Q  // reorder v in the queue 

                      end if 

               end for 

        end while 

        return dist 

End of function 

Next, other k-2 seeds will be found to complete the seed set S = {s1, s2, s3, …, sk} which will be used to 

start K-means clustering algorithm. s1 and s2 denote the first two seed points that are computed with the 

help of the model skeleton in the previous step. Our objective is to find these points which are well 

distributed on the model. In other words, the seeds should be evenly spaced which we call space-filling 

seeds. Therefore, minimum pairwise distance between seeds is maximized. A greedy approach is chosen 

to find other seeds. To find the  seed where  and  is integer, the vertex  in the mesh 

should maximize the following equation: min {Dist (v, s1), Dist (v,s2),…Dist(v,si-1)} and is selected as the 

 seed si. The seed selections will be performed until finding k seeds on the 3D mesh model. Effect of 

initializing K-means clustering with Skeleton-based k seeds and randomly selected seeds are given in 

Figure 4. Former one can generate similar clusters for the models in same groups. However, the latter 

one does not achieve similar clusters. 

 

 
Figure 4.  Clusters in the left image are obtained starting with random seeds. Clusters in the right image 

are obtained using the seeds generated by our method. 
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Model Retrieval 

 

In shape recognition, features in a 3D model are found that describe the model well. Shape descriptors 

are used for this which describes the model in a mathematical way. In this work, area of each cluster is 

computed and divided to the whole area of the model. We then normalize the area by sorting the area 

values from the smallest to largest. Let  denote the whole area of a given mesh M and  is the area of 

the cluster  (recall  and  is integer).  is a descriptor in the 

vector form which denotes the sorted normalized area for clusters where Ni ,   

and . Similarity rate between two models are computed based on Euclidean distance 

between two descriptors and the distance value is divided by  which is the maximum possible 

distance between clusters. Suppose and  be the descriptors 

of the model M and model N, respectively. The similarity is rate  between these models are 

calculated by the following equation: 
 

 
   (2)  

RESULT AND DESCUSSION 

 

A testing model set is formed which consists of 56 3D mesh models from Princeton shape 

benchmark (Shilane et al., 2004) and SHREC’11 benchmark (Lian et al., 2011). Figure 5 shows our model 

database that is used to validate the proposed model retrieval approach. Retrieving is, in fact, the 

process of finding similar models to a given input model. We first calculate the descriptor of the input 

model. Descriptors of the test models are then computed. Using Equation 2 the similarity rate between 

the input model and the test models are found. We then sort models according to their similarity rate 

from most to least similarity rate. Five different input models are used for different number of clusters 

(K). Table 1 shows model retrieval results for different queries. For an eyeglass model, the most similar 

models are eyeglass models whose similarity rate is 99%, 91% and 91%. For a human model with 

different poses, the most two similar models are human models too. However, it has been observed a 

cup model and an octopus model are retrieved with the 95% similarity rates. It can be said that the 

algorithm somewhat fails in this case. For a hand model, the most two similar models are also hand 

models. For the simplified bird model, the most two similar models are simplified bird models too. The 

most four similar models to the octopus model are also octopus models. According to these experiments, 

it can be said that the algorithm generated successful results in most cases. 

 

 
 

Figure 5. Testing data set for retrieving. 
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Table 1. Retrieving results of different queries for the most similar models 

Input 

model 

Numbe

r of 

cluster

s 

Retrieved models respectively from most to least similarity rate 

 

K=3  

99% 91% 91% 86% 86% 85% 83% 79% 79% 79% 

 

K=5 

96.5% 96% 95.3% 95% 94.5% 94.4% 92% 91.3% 90.9% 90.6% 

 

K=6 

97.9% 97% 96% 95.9% 95% 94.5% 94.2 94% 93.3% 93.1% 

 

K=5 

97.9% 97.7% 97.7% 97.6% 97.1% 
97% 96.2% 96% 96% 95.7% 

 

K=9 

99.1% 98% 97.5% 96.3% 96% 94% 94% 92% 91.8% 91.8% 

 

Table 2 shows the most dissimilar models to the query. For the eyeglass model, all of the most 

dissimilar models are octopuses with 57.8%, 59.5%, 60% and 62.4% dissimilarity rates. For the woman 

model, cylindrical model and panda are the most dissimilar retrieved models with 81% of similarity 

rates. For the hand model, the camel is the most dissimilar model, and most of the octopus models are 

the last 10 dissimilar models to the input hand model. According to the results in Table 2, by increasing 

the number of clusters, dissimilarity rate difference between most similar and the least similar model to 

the query decreases. For example; for the eyeglass model with the K=3 setting, similarity rate difference 

between the most similar (99%) and the most dissimilar model (57.8%) is 42.2%. However, this 

difference decreases to 18% for the hand model with the K=6 setting and to 16% for the octopus model 

with the K=9 setting. 
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Table 2. Retrieving results of different queries for the least similar models 

Input 

model 

Number 

of 

clusters 

Least similar models to the query 

  

K=3 68% 68% 67% 67% 67% 67% 62.4% 60% 59.5% 57.8

% 

 

K=5 

85% 85% 

 

84.4% 83% 

 

82% 

 

 

 

  82% 

 

81.3% 81.3% 81% 81% 

 

K=6 

90.5

% 

90.4% 90.3% 90.2% 88.7% 88.5% 86.5% 84.5% 84% 79.9

% 

 
K=5 

90% 90% 
89.8% 89.7% 89.5% 89.5% 86.8% 85.9% 82.2% 79.2

% 

 K=9 

88.7

% 

88.4% 88% 87.8% 87.85 87.7% 87.6% 
87.4% 87.4% 86.7

% 

 

Parameter tuning: Here, we will show the effect of choosing different number of clusters (K) on the same 

group of models (eyeglasses). Experiments are done for the K values of 3, 5, 7 and 9. The retrieval results 

are arranged in Table 3. Average similarity rate for different number of clusters are approximately same 

in most of the cases. It seems that the K=3 setting gives satisfactory results for the eyeglass model and it 

is not required to increase the number of clusters. Note that if the number of clusters increase, more 

computation time is needed. 
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Table 3. Effect of selecting different number of clusters on the similarity rate for the eyeglass model 

Input model Number of 

clusters 

Similarity rate 

 

K=3 

    91%    99% 91% 

 

K=4 

82% 95% 88.4% 

 

K=5 

90% 96% 90% 

 

K=6 

93.9% 96.9% 90.6% 

 

K=9 

87.8% 96.8% 91.6% 

 

The woman model is used to test the effect of selecting different number of clusters, K, on the 

similarity rate. Table 4 summarizes these results. According to Table 4, results with the K=6 setting 

seems better than the K=3 setting, but more computation time is required for this setting. Finding 

optimum number of clusters will be our future goal, but we recommend to select a fewer number of 

clusters as much as possible. 
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Table 4. Effect of selecting different number of clusters on the similarity rate for the woman model 

Input model Number of 

clusters 

Similarity rate 

 

 

K=3 

           99% 
   94%         96.7% 

 

 

K=4 

           99%        88%         98.5% 

 

 

K=5 

          94.5%          91%           91% 

 

 

K=6 

97.6% 96.1% 97% 

 

 

K=9 

     95% 93% 96.5% 

 

Computational time: Time required for clustering and descriptor computation is shown in Table 5. With 

the increase in the number of clusters (K), computational time for both of these steps increase.  Ratio of 

clustering time to descriptor time decreases when K increases. For example, the ratio for K=3 is 0.75, 

whereas it increases to 1.18 for K=9. The reason behind this is that finding K furthest points on the mesh 

is computed based on the Geodesic distance which takes higher time. For a human model, clustering 

time is from 11.4 minutes to 52.9 minutes. Time taken for computing descriptor is from 15.2 to 44.6 

minutes. 

The woman and octopus model contains approximately 5600 and 6000 mesh vertices, respectively. 

Computational time for both clustering and descriptor again increases. It can be observed that 

computation time for models with approximately same number of points are approximately same. For 

octopus model, clustering time changes from 12.8 to 57.1 minutes. Ratio of clustering time to descriptor 
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time for the octopus model with the K=3 setting is 0.86, whereas it increases to 1.21 for the K=9 setting 

which is closed to those of the woman model, 0.75 and 1.18, respectively. The chair model consists of 

8600 mesh vertices, and therefore computational time increases significantly. Clustering time for the K=3 

setting increases from 12.8 minutes to 24.5 when compared to the octopus model. For the descriptor 

calculation stage, it increases from 14.8 to 34.4 minutes. Ratio of the clustering time to the descriptor time 

for the K=3 setting is 0.71, whereas it increases to 1.17 for the K=9 setting. When compared to the 

previous models, they are approximately same. According to the results, it can be concluded that the 

ratio of clustering time to the descriptor time for different models with same number of clusters is 

approximately same also for the models consisting of different number of mesh vertices. Finally, the 

online step, finding the most similar models based on the precomputed descriptors, for the model 

retrieval takes less than a minute for the test cases in this work.  

 

Table 5. Computational time for the proposed technique 

Model Number of clusters Clustering time 

(in minutes ) 

Time for descriptor 

computation 

(in minutes ) 

 

K=3 11.4 15.2 

K=5 21.8 24 

K=7 35.7 33.7 

K=9 52.9 44.6 

 

K=3 12.8 14.8 

K=5 24.1 26.8 

K=7 38.4 37.4 

K=9 57.1 46.9 

 

K=3 24.5 34.4 

K=5 48.8 53.2 

K=7 77 79 

K=9 117 100 

 

CONCLUSION AND FUTURE WORKS 

 

 In this paper, we present a new method for retrieving 3D models represented using meshes. The 

models are divided into clusters by applying skeleton-based K-means partitioning method. In an off-line 

step, model descriptors are computed which are based on the cluster areas. In an online step, similarity 

rate between the query and other models in database is computed and similar models to the query are 

retrieved from the database. Performance of the proposed retrieval technique is shown via several 

experiments where rigid and non-rigid models are utilized. According to the results, the proposed 

method is successful in terms of its retrieving performance. Furthermore, it has been shown that the 

method is invariant to different model poses, and therefore can be used for non-rigid models. 
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As a future work, the proposed clustering method will be improved in order to achieve a less 

computation time in off-line step. One way for this can be to find an optimum number of clusters 

required for the K-means clustering method. The proposed algorithm fails in some cases even though it 

works well in most cases according to experiments. Using different geometric descriptors jointly instead 

of just one simple descriptor can lead to better retrieving performance. Additionally, it will be 

interesting to study on the automatic setting for the k value that is used in the clustering algorithm. 

Finally, we would like to extend our model retrieval technique for quadrilateral meshes (generated 

using mixed-integer quadrangulation (Bommes et al..,2009) which are segmented into quad partitions 

using motorcycle graph ( Eppstein et al., 2008; Bommes et al., 2009; Gunpinar et al., 2013; Gunpinar et al., 

2014a; Gunpinar et al., 2014b.). 
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