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ABSTRACT: The complex octonions are a non-associative extension of complex quaternions, are used in
areas such as quantum physics, classical electrodynamics, the representations of robotic systems,
kinematics etc. (Kansu et al., 2012, James et al., 1978). In this paper, we study the complex octonions and
their basic properties. We generalize in a natural way De-Moivre’s and Euler’s formulae for division
complex octonions algebra.
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Kompleks Oktoniolarin Kutupsal Gosterimi

OZ: Kompleks oktonyonlar, kompleks kuaterniyonlarin birlesimli olmayan ve kuantum fizigi, klasik
elektrodinamik, robotik sistemlerin gosterimleri, kinematik (Kansu et al., 2012, James et al., 1978) gibi
alanlarda kullanilan bir uzantisidir. Bu makalede, kompleks oktonyonlar ve temel 6zelliklerini ¢ahistik.
De-Moivre ve Euler formiillerini Kompleks oktonyonlar cebiri igin tabii bir sekilde genellestirdik.

Anahtar Kelimeler: De Moivre’s formiilii, Euler’s fromiilii, Kompleks oktonyonlar.

INTRODUCTION

The octonions are the largest of the four normed division algebras. While somewhat neglected due
to their non-associativity, they stand at the crossroads of many interesting fields of mathematics (Baez,
2002). A study of the classical electromagnetism’s energy described by the complex octonions in sixteen
dimensions is given by Kansu et al. (Kansu et al., 2012). The complex exponential &'’ =cos@+isiné
generalizes to quaternions by replacing i by any unit quaternion p since any unit pure quaternion is a

root of -1. Hence, any quaternion may be represented in the polar form ( :\q\ e“’ where@ is a real

angle. As with complex numbers and quaternions, any octonion can be written in polar form as

X =Tr(Cos+Wsing) where r=,/N and W*=-1. In this paper, we introduce the complex octonions

algebra, Oc, and study some fundamental algebraic properties of them. The polar representation of
complex octonions are given, and then by means of the De-Moivre's theorem, any powers of these

octonions are obtained. Finally, we give some examples for more clarification.
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MATERIAL AND METHOD

A complex octonion X has an expression of the form

X=Ag+Ae+Ae A rAC A FAG+AE =AY Al

357

@

where A — A are complex numbers and g, (0<i<7) are octonionic units satisfying the equalities that

are given in the table below;

Table 1. Octonionic units

e1 e2 es3 €4 (4] €6 e7
e1 | -1 es - es - - €6
e2 é4 e7
e2 | -1] e | e | ez | ~ -
es3 €4 (%3]
es | e | -en| -1 e | ~ es -
€6 €4
es - - -1 ] e | e | es
es €6 e7
es | es | ez | e | -e1 | -1 | -es | e2
e | e7 | es | -es | -e2 | es | -1 | -en
ez | -e6 | es | es | -es | —e2 | er | -1

As a consequence of this definition, a complex octonion X can be written as

X =X+1ix',

2)

where x and x', real and pure octonion components, respectively. The set of all complex octonions is

denoted by Oc.

For defined octonion in equation (1), the scalar and vectorial parts can be given, respectively, as

\7x :Aiel"'Azez+A363+A484+Ases+p&aee+A7e7-

Sx Z'Abem

A complex octonion X can also be written as

X=(Ae+tAe+Ae+Ae)+(A+Ae+Ae+Ag)e =Q+Q'e,

where e? = —1and

Q.Q" eHo={Q=A +Ae + Ae, +Ag; [ =e’ =6’ =—1,A <C},

the complex quaternion division algebra (Jafari, 2016).

®)

(4)

©)

(6)
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7 7
For two complex octonions X = Z Ae andy = Z B e, the summation and substraction processes are
i=0 i=0

given as
XiY:i(AiBi)ei. @)

Addition and subtraction of complex octonions is done by adding and subtracting corresponding terms

and hence their coefficients, like quaternions.
The product of two complex octonions X =S, +V,,Y =S, +V, is expressed as
XY =8, S, (Vi Vi )+ Sy Vi, +8, Vi +Vi xV, ®)

Multiplication is distributive over addition, so the product of two octonions can be calculated by
summing the product of all the terms, again like quaternions. This product can be described by a matrix-

vector product as

A A A A A -A —A -A]B,

AVA A A A A A -A|B

AA A A A A A A|B
v A A A A A A A A B ©)

ALA A A A A A -A|B

AL-A A A A A A A|B

A -A A A A A A A|B

A A A A A A A A B]
where X,Y € O, . Complex octonions multiplication is not associative, since

e(e,e)=ee=—¢, (10)

(ee,)e, =6, =¢,.
It is clear that subalgebra with bases e, €, €, €, (2<i, j<7)is isomorphic to complex quaternions

algebera H..

SOME PROPERTIES OF COMPLEX OCTONIONS

7
1) The Hamilton conjugate of X = Z Ae =S, +V,is

i=0
p— 7 —
X=~Ae-> Ae=S,-V,. (11)
i1
The complex conjugate of X is

X2 Ao A 6 = (8 —iay)e, + (@ —ia)e, +..+ (@ —ia e, (12)

i=1

The Hermitian conjugate of X is

X' = (X)* = Aa € _iA €= (ao _i%)eo _(ai_iai)el_"'_(a7 _ia;)er (13)


http://en.wikipedia.org/wiki/Distributive_property
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Itis clear the scalar and vector parts of X is denoted by § = X+ X and V, = ﬂ
2
2) The normof X is
o 7
N, =XX =XX =|X|[ =Y. A eC (14)
i=0

If Ny =1 then X is called a unit complex octonion. We will use Of to denote the set of unit complex

octonions. If N, =0, then X is called a null complex octonion.

Lemma 1. Let X,Y € O;. The conjugate and norm of complex octonions satisfy the following properties:
) X=X, (X) =X, (X) =X

2) XY =Y X, (XY) =Y'X", (XY)' =YX' (15)
3) X4Y=X+Y, (X+Y) =X"+Y", (X +Y) =X"+Y'

4) Ny =Ny, Ny, =Ny N,

3) The inverse of X with N, #0, is

X1=—""X. (16)

1
N X
Example 1. Consider the complex octonions

N

X, :2+2e1+(1—i)e2+2ie3+(1+i)e4+ie5+;e6—e7,
X, :j§+\/1§e1+(1—i)e2+2ie3+(1+i)e4+\/§ie5+e6+2e7, (17)

X,=1+(2-1)e +ie, +e, +(1+i)e, +ie, +e,—¢;,

The norms of X,, X,, X, are

N, =1 N, =0, N, =5-2i (18)
The conjugates of X, X,, X; are
Xl:\/§—2e1—(1—i)e2—2ie3—(1+i)e4—ie5—;e6+e7,
e +(1+i)e,—2ie, +(1-i)e, —2ie, +e, +2¢,, (19)

R

X{=1-(2+i)e +ie, +e,—(1-i)e, +ie, +e,—¢,,

The inverse of X,, X, are

Xt =£—261—(1—i)e2 die,—(L+i)e, —ie, ——e, +e,
2 (20)

X, = W[1 (2—-i)e,—ie,—e;—(1+i)e,—ie; —e, +e,],

and X, not invertible.

Theorem 1. The set Ogof unit complex octonions is a subgroup of the group Og where

02 =0, -[0-0].
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Proof: Let X,Y € Og.We have N,, =1, ie. XY €Og and thus the first subgroup requirement is
satisfied. Also, by the property

Ny =Ng=N . =1, 1)
the second subgroup requirement X * € OF..
RESULT AND DISCUSSION
Trigonometric Form and De Moivre’s Theorem
7
Every non-null complex octonion X = » A g can be written in the trigonometric (polar) form
i=0
X =R(cos g+W sin g), (22)
with
7 y2
2
i A 2¥) i i
R = |Nx| = ZAZ , COS¢h = and sing=~""_~ . The unit complex vector W =W+iW is
=0 [Ny VINK|
given by
- 1
W = (W, Wy, W, ) = ————— (A, A, A). (23)
A"
i-1

Example 2. The polar form of the complex octonions X, = i +(i,1+i, 2i,1-i,2, 0, \/g) is
2

NG
T = . T
X, =cos—+W, sin— 24
L 4 tWasin (24)

and X, =i+ (1+2i,—i+1, 2—i,-1, 2i, i+1,/5) is

X, =cos¢+W,sin g, ¢=cos‘1i=%—iln(—1+\/§), (25)
where
W, = V2 (i,1+i, 2i,1-1,2, 0, \E) and W, :\/15(1+2i,—i+1, 2-i,-1, 2i, i +1,V5). (26)

It is clear that N\A71 = NW2 =1 and WW, =W,W, = 1.

Since W 2 = —1 we have a natural generalization of Euler's formula for generalized quaternions
) . 23 pa
e —1iwo- w9
2! 31 41
2 e 3 5
A AR 17 T A AN (27)
21 41 3 5!
=cos@+W siné,

for any dual number 6.
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Lemma 2. For every unit vector W ,we have

(cosé’1 +W sin 6’1)(cos6’2 +W sin 92) =cos(6,+6,)+Wsin(6, +6,). (28)

Theorem 2. (De-Moivre's formula) Let X = /N, (cos¢ +W sin ¢) be a complex octonions. Then for any
integer n;

X" = ({/N,)".(cosng+W sinn g) (29)

Proof: The proof will be by induction on nonnegative integers n and let N, =1.
For N=2 and on using the validity of theorem as lemma 1, one can show
(cos ¢ +W sin ¢)? = cos 2¢+W sin 2¢ (30)
Suppose that (c0s¢+W sing)" =cosng+W sinng, we aim to show
(cos ¢+W sin )™ = cos(n+1)¢+W sin(n+1)g. (31)
Thus

(cos g +W sin ¢)™* = (cos ¢ +W sin ¢)" (cos ¢ +W sin ¢)
= (cosn@ +W sin ng)(cos ¢ +W sin ¢) (32)
=cos(n¢g + ¢) +W sin(ng + @)
= cos(n +1)¢ +W sin(n+1)g.

The formula holds for all integers n;

Xt =cosgp—Wsing, (33)
X" = cos(—n¢)a+W sin(—ng) (34)
= cos ng —W sin nég.
[
Example 3. Let X =—/3+(1+i, i, 2i,1-i,1, 1, 2) be a complex octonion. Every power of this octonion is
found with the aid of Theorem 1. For example, 20-th and 83-th powers are
X% =2%(cos 20°F 1\ sin 205—7[)
6 6
35)
=22°(—%+vv ‘f) 29[+ B, i, 20 11,1, 1, 2)],
and
Sz o . o
x® =2%(cos83—+W sin83—
( 6 6 ) (36)

=—22(J3+W).
We investigate some properties of the complex octonions by separating them in two cases:

i)  Complex octonions with complex angles (¢=p+ip*); i.e.
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X =[Ny (cosg+W sing), (37)
ii)  Complex octonions with real angles (¢=¢, p*=0); i.e.
X = /[N, | (cosp+W sin ). (38)

Theorem 3. De Moivre’s formula implies that there are uncountably many unit complex

octonion X =cos¢+W sing satisfying X" =1for n 3.
Proof: For every unit vector W, the unit complex octonion

X =c052—”+Wsin2—”, (39)
n n

is of order n. For n=1or n=2, the complex octonion X is independent of W. |

N

Example 4. x =i+(i,1+i, 2i,1-i,2, 0, \/g) is of order 8 and X ==+ (1+i, i, 2i,1-i,-1, 1, 2) is of
J2 2 2 2
order 12.

Theorem 4. Let X = cosq)+Vv sinpbe a unit complex octonion. The equation A" =X has n roots, and

they are

(p+2k7z

A _cos((/)+ ) +W sin( ), k=0,1,2,..,n-1. (40)

Proof: We assume that A=cos$+Wsin$is a root of the equation A" =X,since the vector parts

of X and A are the same. From Theorem 2, we have

A" =cosng+W sinng, (41)
thus, we find
cosng =cos g, sinng=sin g,
So, the N roots of X are
A =cos(¢)Jr2 ”)+Wsm(¢+2k”), k=012,..,n-1. (42)
n
n

B3

Example 5. Let X :7+(1+ 2i,—\/§, 2i, i-L%,i—l,Z) = COS%-%—VV sin%be a unit complex octonion.

The cube roots of the octonion X are

), k=0,1,2. (43)

k

xH_ Cos(ﬂ/B-;Zkﬂ)+Wsin(7r/6-;2k7r
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For k=0, the first root is X()%=COS£+VV sin” -098+017W, and the second one for k=1 is

Xl% = cosll%ﬂJrVV sin 11%[ =-0.64+0.76 W and third one is

Xz% =005215'—8”+VV sin215—8”=—0.34—0.93vv. (44)

1 1 1
Also, it is easy to see that X2 + X2 + X =0.

The relation between the powers of complex octonions can be found in the following Theorem.

Theorem 5. Let X be a unit complex octonion with the polar form X =cos q0+V\7 sing.

If m= 2z eZ {1}, then X "= X" if and only if n=m (mod p). (45)
@
Proof: Let n=m (mod p). Then we haven=a.p+ M, where a € Z

X" =cosng+W sinng

= cos(ap +m)@+W sin(ap +m)e (46)
= cos(az—ﬂ +m)p+W sin(az—ﬁ+ m)e
4 4
= cos(mg +a2z) +W sin(me + a27)
= cosmg +W sinmg
=X"
Now suppose
X" =cosnp+Wsinng and X™ =cosme+W sinme. (47)
If X"=X"™ then we get COSNg = COS Mg and Sin N® = sin Mg, which means
Nnp=me+2za, ac”Z (48)
2r
Thus n=m+—a or n=m(mod p). (49)
4
[
E 2 : S 1 . ,
xample 6. Let X :7+(1+ 2|,_\/§, 2i, |_1,T,|_1,2) be a unit complex octonion. From Theorem 5,
2
2z
m=-—-- =8, so we have

x4
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X =X=X"=.
X2=X0=x®=
X3= Xllleg = . (50)

XP=X?=X"=.=-1

XE=X"®=X*=.=1

CONCLUSION

In this paper, we defined and gave some of algebraic properties of complex octonions and
investigated the De Moivre’s formulas for these octonions. The relation between the powers of complex

octonions is given in Theorem 5. We also showed that the equation X "=1 has uncountably many
solutions for any unit complex octonions (Theorem 3).

FUTHER WORK

We will give a complete investigation to real matrix representations of complex octonions, and give
any powers of these matrices.
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