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ABSTRACT: This paper is concerned with the continuous contact problem of two transversely isotropic
layers resting on a circular support. The external load is applied to the layers by a rigid cylindrical block.
It is assumed that the contact between all surfaces is frictionless and body forces are not taken into
account. The problem is formulated in terms of singular integral equations obtained from the continuous
contact position. Equations are solved numerically by using the Gauss-Chebyshev integration method.
Furthermore, numerical results as pressure distributions under the rigid cylindrical block are given for
different material combinations.

Keywords: Contact problem, Transversely isotropic material, Rigid cylindrical block, Circular support, Singular
integral equation.

Rijit Cembersel Destek Uzerinde Duran iki Katmanli Enine-izotrop Slabin Eksenel Simetrik Temas
Problemi

OZET: Bu makale, cembersel destek iizerinde duran iki adet enine-izotrop katmanin siirekli temas
problemini ele almaktadir. Dis yiik, katmanlara bir rijit silindirik blok vasitasiyla tatbik edilmistir. Tiim
ylizeylerin arasindaki temasin stirtiinmesiz oldugu kabul edilmis ve kiitle kuvvetleri hesaba
katilmamistir. Problem, siirekli temas konumundan elde edilen tekil integral denklemler cinsinden
formiile edilmistir. Denklemler Gauss-Chebyshev integrasyon yontemi ile niimerik olarak ¢oziilmiistiir.
Bunun disinda, rijit silindirik blok altindaki basing dagilimlarina ait sayisal sonuglar bir¢ok farkl
malzeme kombinasyonlari i¢in verilmistir.

Anahtar Kelimeler: Temas problemi, Enine-izotrop malzeme, Rijit silindirik blok, Cembersel destek, Tekil integral
denklemi.
1. INTRODUCTION materials are also

reinforced composite

characterised as transversely isotropic media.

In recent years, there is an increasing
interest on anisotropic materials due to high
strength over density ratio and tailor fit strength
properties. Also, the elastic properties of the
materials become different due to certain
technological processes such as rolling and the
condition of anisotropy must be considered.
Metallic substances, such as zinc and magnesium
are characterised as being transversely isotropic
and have five elastic constants. Many fiber-

Adams and Zeid, 1984 have
investigated an elastic punch moving across the
surface of a semi-infinite solid. Bakirtas, 1980
studied a rigid punch problem in a non-
homogeneous elastic half-space. The axially
double contact problem for
frictionless elastic layer studied by Civelek and
Erdogan, 1974. Civelek, 1972 introduced the axi-
symmetric contact problem for an elastic layer

symmetric

on a frictionless half-space. Uyaner et al., 2000
have investigated plastic zones in a transversely
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isotropic cylinder containing a ring shaped
crack. Fabrikant and Sankar, 1986 introduced
concentrated force underneath a punch bonded
to a transversely isotropic half-space. The non-
symmetrical plane elasticity problem of an
elastic layer supported by two elastic quarter
plane solved by Aksogan et al, 1997. The
frictionless contact problem between an infinite
layer bonded to a rigid support and a rigid
stamp considered by Kahya et al., 2001 . Punch
problem for an elastic layer overlying an elastic
foundation analyzed by Dhaliwal, 1970.
Frictionless contact problem for an elastic layer
under axisymmetric loading were studied by
Gecit and Erdogan, 1978. Ratwani and Erdogan,
1973 have investigated on the plane contact
problem for a frictionless elastic layer. Gegit,
1986 introduced the axisymmetric double contact
problem for a frictionless elastic layer indented
by an elastic layer. Avci et al.,, 2006a studied an
axisymmetric smooth contact for an elastic
isotropic infinite hollow cylinder compressed by
an outer rigid ring with circular profile. Uyaner
et al., 2002 considered a problem in an elastic-
perfectly plastic dissimilar layered medium.
They assumed that a transversely isotropic layer
is sandwiched between two isotropic semi-
infinite half spaces, and contains a penny-shaped
crack located in its mid-plane. A contact problem
for a transversely isotropic cylinder radially
compressed by a rigid toroidal indenter was
considered by Avci et al., 2006b.
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In this study, the plane elastostatic
problem of transversely isotropic layers resting
on a circular support under effect of pressure
load by means of a rigid cylindrical block is
considered. The general equation of stresses and
displacements are obtained by using the general
equation of elasticity and Hankel transform
among integral transform techniques. The
continuous contact problem is considered. A set
of linear algebraic equation is obtained by
applying the expression of stresses and
displacements to secondary conditions of the
continuous contact problem. When the set of
linear algebraic equation is solved, the unknown
constant coefficients using the equation of
stresses and displacements are obtained. The
singular integral equations are numerically
solved by wusing the Gauss-Chebyshev
integration method. The diagrams of pressure
distributions under the rigid cylindrical block
are plotted.

2. BASIC FORMULATION

Consider two infinite transversely isotropic
layers of thickness h, shown in Fig. 1. The
external uniform compression load P is applied
to the transversely isotropic layers through a
frictionless semi-infinite cylinder of diameter 24.
The body forces are neglected. It is assumed that
the contact between the layers is frictionless and
the interface transmits only compressive stresses.
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Figure 1. Geometry of the problem

Referring to Fig. 1, the equilibrium and
the compatibility equations are expressed in
cylindrical coordinates as
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do, Or, O0,—-0, 0
or + oz + r - (1a) where «c¢j (ij=1.4) are elastic constants.
or oo . Substituting equations (4a), (4b), (4c), and (4d)
—+—r4+-2=0 (1b) into the equations (la) and (1b) the following
or oz r two partial differential equations are obtained.
For transversely isotropic bodies the 22u 1éau U
stress components can be written as (Lekhnitskii, | =t ——— |t
1981) or: ror r
2 2 ©)
o°u oW
O, =C; &, +C,&, +C58, (2a) Cag 322 +(013 +C44)826r =
O,y =Cp&, +C&, +C¢, (2b)
o, =C,(e, +&,)+Cye, (2¢) (G +C,,) o°u +36_u N
T, =Culr 2d) B azorroaz o
o°'w 1ow o°w
e o e o =0
ou
& = ar (3a)
r
u In order to solve these differential equations
Ey=— (3b) Hankel transform pairs can be used as
r
. ow 30 B
=— c
" u(r,2) = [ £0(&,2)3,(&r)dé (72)
ou  ow 0
e o i
®(£,2) = [ ru(r, 2)3, (&)dr (7b)
The stress components may be 5
expressed in terms of displacements u(r,z) and w
w(r,2) as, ; . w(r,z) = [£9(£,2)],(&r)dé (8a)
u u
O, =Cy—+Cpp —+Cpy — (4a) ’
or 0z i
au ow ¥($,2) = [rw(r, 2) 3, (¢r)dr (80)
0,=C,—+C;—+C3— (4b) 0
or r oz For a transversely isotropic layer, it is
o =C a_u u @ (4¢) necessary to select the displacements functions
o Blor r) Pz u(r,z) and w(r,z) of the forms
ou  ow
T, =Cy| —+— 4d
" 44(82 arj D
u,(r,z) = Ig(Aemlﬁ +Be™* +Ce™ +De™)J (&)dE  (=1,2) )
0
2 ((fm?—m,d)Ae™ + (fmS —m,d)B,e™ .
w(r,2) = [ & | Jo(@)dé (=12) (10)
o |+ (fmd —m,d)C,e™ + (fm; —m,d)D,e™

where A,B,,C,,D, (i=1,2) are unknown a++a —4b

functions which are determined from the m ;= 2 (11a)
boundary conditions and m;, m,, m;, m,, d, fas
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a+t+ya’—4b

My 4=~ > (11b)

R E L (Cia+Cas)’ (12a)
C44(Ci3+Cyy)

fo 3 (12b)

Ci3 +Cyy
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where J,(&r) and J;(&r) are Bessel functions

of first kind. Stresses and strains can be written
after substituting u(r,z) and w(r,z) into the

equations (4a), (4b), (4c), and (4d) as

o, (1 2) :@ j E(A™Z 1 Be™ 4 Cie™Z + D,e™)J, (&r)dé +
0

(1 +Cya(fmy! —mPd)) Ae™ +
Tl (g +Cyg(fmg —mid))Be™ +
0 (Cug +Cia(fmg —n”lgzd))Ciem3ébz +

(11 + G5 (fmy —mjd))Die™

Jo(eh)de

0ig(r,2) =TT [ £(A™ 1 Bie™ + Ce™ + Die™ )y () +
0

(C1p +Cra(fmy —mZd))Ae™ +
T | (€12 +Cya(fmy —m2d))Be™ +
o | (i +cis(fmg —mid))Cie™ +
(Cp +Cr5( fmi - mfd))Diem‘th
- ot fm4—m2d .em1~§Z +_
(i3 +Cq3(fmy —myd)) A
T o] (Cig +Co(fmy —m3d))Bie™ +
O'iz(r,Z)ZJ-§2 13 + C33 i i i .~
o | (C3+Cg(fmg —mgd))Cie ™ +
| (€13 +Ca3( fmg —mZd))Die™* |
Cag (My — (fm —myd)) Ae™ +
Caq(My — (M3 —m,d))Bie™ +

Tirz (r.z) :sz
0

Caq (Mg — (fm3 —myd))Cie™ +

| Cag(My —(fmF —m,d))Die™< |

3. SOLUTION OF THE PROBLEM

Assuming that the contacts between all surfaces
are frictionless, the boundary conditions may be

expressed as

7, (r,2)=0 z=0 (14a)
7y, (r,2)=0 z=h (14b)
7o (r,2) =0 z=h (14c)
o, (r,2) =0 z=h (14d)
Zlmr)-w(r2]=0 z=n, (14¢)
01,(r,2) = 0, (r,2) z=Mh (14f)

Jo(er)ds

(13a)

(13b)

Jo(N)dS (13¢c)

J1(é)dS (13d)

onr.2) == 5(r D),
1 r=b

5(r—b):{0 L, 270 (14g)
0,,(r,2)=-p(r),-a<r<a, z=h (14h)
W,(r,h)=0 —o<r<-a (14i)
W,(r,h)=0 a<r<ow (14j)

In equations (14a,...,14h) the continuity
conditions for the displacements are expressed
in terms of derivatives for dimensional
consistency in the equations of the problem.
From equilibrium condition,
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a
j 27105, (r,h)dr = —P = —py7a? (14K)
0

By substituting (13d) into (14a),

XAy + X12By + %3G + %40y =0 (15)
where
X = (m —(fm®-md)) i=1.4 (15a)

By substituting (13d) into (14b), we get

Xo1 AL+ Xp2B1 + Xp3C; + X4 Dy = 0 (16)
where

Xo; = (m; — (fm® —myd))e™M i=1..4 (16a)

Substituting (13d) into (14c), the following
equation can be obtained

Xa1 Ay + X5 B, +X5C5 +X,D, =0 (17)
where
X, = (m; — (fm’ —m,d))e™™ i=1.4 (17a)

By substituting (13d) into (14d),

X31Ap + X32B; + X33C; + X340, =0 (18)

Xgi = (m; — (fm? —myd))e™" i=1..4 (18a)

0 .2
5wz(r,h)—£5

Boundary conditions in (14a,g) may be used
to eliminate seven of the eight unknowns. The
mixed boundary conditions in (14h,j) may be
used to obtain a system of dual integral
equations for the eighth unknown function. It is
convenient to reduce the mixed boundary
condition to an integral equation. The integral
equation will be singular. In order to avoid a
strong singularity in the resulting equation, it is
necessary to introduce a new function as
derivative of the displacement w,(r,z), rather
than the displacement. The new unknown
function will be defined as follows

G(r)= ng(r, h) (23)

(md — fmd)e™" A, + (m,d — fm3)e™"B, +

(mad — fmd)e™<"C, + (m,d — fm2)e™"D,

By substituting (10) into (14e), we get

Xg1 Ay + XgoBy + X43Cq + Xga Dy —

(19)
Xq1Ap — X42By = X43C5 — X44D, =0
X4 = (fmd —mid)e™™  i=1.4 (19a)
By substituting (13c) into (14f),
X51 Ay + X528y + X53C; + X540y — (20)

X51Ap — X52B, — X53C; — X540, =0
Xs; = (Cpa + Caa(fm* —mZd))e™<™ =14 (20a)

Finally, by substituting (13c) into (14g),

X1 Ay + XgoBy + Xg3Cyp + Xga Dy —

(21)
Xe1 Ao — Xg2Ba —Xg3Cp = XesDy =1
Xei = (Cyg + Caz(fm —mZd)) i=1..4 (21a)
n= —% 0 ré(r —b)Jy(&r)dr (r=b) (21b)

By using derivatives of equation (10) one can
obtain

}Jl(fr)df (22)

W, (r,h) = ]G(r)dr+
R (24)
J‘G(r)dr +JG(r)dr

Write the help of (22), boundary conditions
(14i,j) and (22) are equivalent to

IG(r)dr -0 (25)

e Note that in -a<r<a w, is

bounded and G(r) satisfies Holder
condition. Substituting (22) into (23)
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by using (25), following equation
can be obtained

(md — fm3)e™S A, +

| (myd — fm3)e™="B, +

B(S) (26)
(mgd — fm3)e™"C, +
(m,d — fm3)e™"D,
where
l a
B(E) = [ P60 (epdp @7)
—a
Equation (26) can be written as
X71Ag + X72B3 + X73C; + X74D; (28)
=B(%)
where
Xoi = (fm® —m;d)e™™ i=1.4 (28a)

Unknown functions A: (i=1,2) can be
obtained in terms of B(¢) and n after solving

equations (15,...,21,28). By using boundary
condition (14h) under single valuedness
condition (14i,j), (13c) can be written as

o= M1(~5>£pe(p)Jl(§r)dp+ o

" M (&N, (&n)de

M, (&) converges to M, for larger values of
& let

g!im My (&) =M, (30)

where

(MJcgem3 £ 2 — fmPdegzms —
fmicgms — fmfcgms —
fmZc s — fmydegams —

M, =| fmcems — fmycsm; — (31)
fCjaM2 +m,Caamad 2 +
mydcssms + €5 +dcy5) /
(mg fmy (Mg +my))
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After some manipulations (29) can be
written as

()= | { Mo +k(r,p>}e<p>dp

re (32)
+7K3(r)
where
K(F,p) = Mok (r, p) + 7o (1 p) (33a)
k]_(rxp) — m(r:p) + m(r!p)_l (33b)
p+T p—r
&

ko(r,p) = J.pé(Mm = M;(£))J1(p)do(er)dS (33c)
0

o0

(1) = 22 [aM ()3 (@) Io(@)ds (33d)
0

1 r=p
r

m(r, p) = E[—j r<p (33e)
P

2 2
LE[E}LK(EJ > p
o o\r ro r

Where K(x) and E(x) are elliptic integrals

of first and second kind respectively.

For the convenience of solving integral
equation, the definition of the functions is
extended to r <0 range. Thus, Equation (32) has
to be solved analytically under the condition that

jG(r)dr =0 (34)

4. NUMERICAL SOLUTION

Examining the kernel in Equation (32), when
r=p it is obvious that the first part of the

kernel, ki(r,p) has a simple logarithmic
singularity in the form of Iog| p— r|. The second
part of the kernel, k,(r,p) is bounded in the
closed interval -a<(r,p)<a. The unknown
function G(p) is infinite but integrable at p=+1,

therefore the solution is of the form
(Muskhelishvilli, 1953).
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G(p) =0(p)l(a~p)I V2 (35)

A standard numerical technique can be used
to find out the unknown function G(p). For
convenience in the numerical schema,
normalization is carried out by the following

dimensionless variables.

r=an (36)
p=ar 37)
Then equations (32) and (34) can be
expressed as

1 ([ M

;[L_n +K(2',77)}G(r)dr+ SO
=-p(n)

1

[eman=0 (39)
-1
where

K(z,n7) = ak(z,n) (40)

Since G(7) has an integrable singularity and
may be written as

G(r)=(-7°)"?F(z) (41)

The solution of Equation (38) is determined
by wusing single-valuedness condition in
Equation (39) (Erdogan and Gupta, 1972).
Substituting Equation (41) into (38) we obtain

1
17 M, F(7)
;:[{;4‘ K(T,n):|—(l—z'2)1/2 dz + Ks(7) (42)

=-p(n)

F(z) has to be obtained from Equation (42)

subjected to the single-valuedness condition.

[ F@
——=——=dn=0 (43)
:[_(1_772)1/2

Equations (41) and (42) can be evaluated by
using the Gauss-Chebyshev integration formula.
Thus from Equations (42) and (43) we obtain

Z%F(Tk){ Mwn

+ K(Tk177r):|+ K3(77r)

= T Tl (44)
=-p(n,)
(r=1,...,n-1)
ki
D> =F(7)=0 (45)
n
r=1
The collocation points are
T = COS(k—_iﬂ'j (k=1,...,n) (46)
7 = cos(zzr _; ;rj (=1,..,n-1) (47)

5. NUMERICAL RESULTS AND
CONCLUSION

Table 1. Values of elastic constants (in GPa)
(Behrens,1971; Huntington, 1958)

Material c1n c12 c13 c33 Ca4
Gr-Epoxy 8.28 2.767 0.285 86.8 4.147
Magnesium 59.7 26.2 21.7 61.7 164
Barium- 168.0 78.0 71.0 189.0 5.46
titanate

E-Glass 14.99 6.567 5.244 4227 4.745
Steel 282.69 121.15 121.15 282.69 80.76

The isotropic material selected is steel
with the elastic modulus of 210 GPa and the
Poisson’s ratio 0.3. For the transversely isotropic
materials considered in this paper. the numerical
values of elastic constants are used for different
materials and tabulated in Table 1.

Some of the calculated results obtained from
the solution of the continuous contact problem
described in the previous section for various
dimensionless quantities such as a/b, hi/h2 are
shown in Figs. 2..4. It is assumed that both of
transversely isotropic layers occur the same
materials, the contact along the interface is
frictionless.
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p(r)/po
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- ---a/b=0.4
— — a/b=0.5
a/b=0.6

r/a

Figure 2. Pressure distribution for a/b=0.4, 0.5, 0.6 and h1/h2=0.2 in a graphite-epoxy

Fig. 2 shows the variation of the normalized
pressure value, p(r)/po between radius of rigid
cylindrical block with r/a for hi/h2=0.2 and
different a/b for graphite-epoxy. As seen in Fig.
2, the normalized pressure under rigid stamp
decreases with increasing r/a. The pressure

p(N/po

1,5 4

0.5 4

values is maximum for r/a=0.245486. Normalized
pressure decreases between r/a=0.245486 and
r/fa=1. For a fixed value of hi1/h2=0.2, the contact
area, a/b increases with normalized pressure,

p(r)/po.

= = = hl/h2=0.5
= =—hl/h2=1
—h1/h2=2

0,2 0,3

0,4 0,5 0,6 0,7 0,8 0,9

r/a

Figure 3. Pressure distribution for h1/h2=0.5, 1, 2 and a/b=0.5 in a graphite-epoxy

Further results for the normalized pressure
distribution is shown in Fig. 3, for a fixed value

of a/b=0.5. The figure shows p(r)/po for three

selected values of layers thickness ratio,
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h1/h2=0.5, 1, 2 in a graphite-epoxy. It appears decreasing r/a. However increasing of p(r)/po is

that, for a fixed value of a/b and increasing layers negligible.
thickness  ratio, p(r)/po  increasing with
5 - - - - Magnesium
| — — Graphit Epox
45 - phit Epoxy
E-glass
4] (¢
25 — ~ — - = Barium Titanate
T —
= 7 Steel
31 \
o
o
=254 L --m \
= . \
o —_- -
24 = — - -~ . N .
157 e e = m— \ .
-
1 ~ -
1 ~. el LTSNS
~-= —_—l -1
0,5 1 ~ ee—— _:.:::
0 . . . . .
0 0,2 0,4 0,6 08 1
r/a

Figure 4. Pressure distribution for a/b=0.4 and h1/h2=0.3 in different materials

Fig.4 shows the normalized pressure, p(r)/po,
between radius of rigid stamp, r/a for hi/h2=0.3
and a/b=0.4 in different materials. For steel E=210
GPa and v=0.3 are given. As it can be seen in the
figure that the normalized pressure has a sharp
peak at #/a=0.245486. Normalized pressure
values are bigger in E-glass layer while it is
There is a small
difference between pressure distribution for

smaller in other materials.
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