GLASS FORMATION IN Li2O-Pr2O3-B2O3 SYSTEM

Sh.A.HAMIDOVA, F.A.NOVRUZOVA, S.M. AGAPASHAYEVA

Institute of Chemical Problems of NAS of Azerbaijan

ABSTRACT: By methods of physical-chemical analysis (DTA, X-ray diffraction, IR-spectroscopy) phaseand glass formation in Li₂O-Pr₂O₃-B₂O₃ system was researched in zone, which is enriched with boric anhydride. According to the results of three quasi binary sections: Li₂O·3B₂O₃- Pr₂O₃·3B₂O₃; Li₂O·2B₂O₃-Pr₂O₃·3B₂O₃; Li₂O·2B₂O₃- Pr₂O₃·B₂O₃, as well as materials about glass formation in binary Li₂O-B₂O₃- and Pr₂O₃-B₂O₃ systems the zone of glass formation and glass transition diagram of Li₂O-Pr₂O₃-B₂O₃ was defined.

Key Words: Class formation, physical-chemical analysis, Li2O-Pr2O3-B2O3 system

INTRODUCTION

In borate systems glass formation is connected with the quantity of polymer -B-B-Bties and that's why glass formation zones joins to that part of system, which is rich with boric anhydride. In systems, which include oxides of alkali and rare earth elements, the zone volume of glass formation only in a small degree depends on the nature of rare earth element. The definite dependence of zone sizes on the nature of rare earth elements was determined. First of all it concerns to the systems with the participation of oxides La, Pr, Nd, Sm, Eu and others. According to structural composition (Levin E.M, 1966; Poycon K, 1969; .Hamidova Sh.A. 2005) each mol of enumerated oxide can contain 3,65; 2,9; 2,8; 2,5 mol of B2O3.

Earlier we have investigated glass formation zone of systems Li₂O-Ln₂O₃-B₂O₃ (Hamidova, Sh.A., 1995; Hamidova Sh.A. and Kuli-zade E.S., 2004, Hamidova Sh.A. and Kuli-zade E.S., 2003 ; Hamidova,Sh.A., Novruzova, F.A., and .Aliyev, I.I., 2006; .Hamidova,Sh.A., and Novruzova, F.A., 2007) and general analogy of them in glass formation was defined.

MATERIALS AND METHODS

Investigations were carried out by methods of physical-chemical analysis DTA

(derivatograph MOM), X-ray diffraction and IR-spectroscopy (SPE CORD).

Reactive Pr₆O₁₁ (99, 99 %), Li₂CO₃- "special pure", H₃BO₃ "chemically pure" were used.

Hinge of oxides Pr_6O_{11} were taken with calculations to Pr_2O_3 , lithium carbonate and boric acid according to volatility of components. The synthesis was carried out in 900-1100°C temperature regime in platinum crucible.

Alloys were poured on titanium plate and hardened on air. Glass shape alloys and glass crystals were crystallized at temperatures, corresponding to the crystallization effects on curve heating (DTA).

RESULTS AND DISCUSSION

Glasses of Li₂O-Pr₂O₃-B₂O₃ system were synthesized by three internal sections: Li₂O·3B₂O₃-Pr₂O₃·3B₂O₃; Li₂O·2B₂O₃-Pr₂O₃·3B₂O₃; Li₂O·2B₂O₃-Pr₂O₃·B₂O₃. Other compositions were also synthesized and investigated with the aim to define the borders of glass formation. According to investigations and materials about binary borate systems the tentative zone of glass formation in triple system Li₂O-Pr₂O₃-B₂O₃ was plotted (Fig.1).

Figure 1. Diagram of glass formation in triple system Li₂O-Pr₂O₃-B₂O₃.

Border of glass formation in system Li₂O-Pr₂O₃-B₂O₃ begins from the points of compositions 47 mol % Li₂O on the side Li₂O-B₂O₃, 2.9 mol % Pr₂O₃ on the side Pr₂O₃-B₂O₃. There is wide exfoliation zone in the zone of compositions, which join to B₂O₃ in Pr₂O₃-B₂O₃ system. All alloys of this zone exfoliate into liquid practically pure boric anhydride, which gives transparent glass and liquid while cooling, the composition that is in other border of exfoliation. By this way one border of homogeneous glass transition passes from the point of composition 57 mol % B₂O₃ on side of Li₂O-B₂O₃, then turns round the left border of exfoliation, and reaches 2.9 mol % Pr₂O₃ on side of Pr₂O₃-B₂O₃ of triangle Li₂O-Pr₂O₃-B₂O₃.

While heating the obtained transparent green glasses easily crystallize.

Results of differential thermal analysis show, that glass formation and crystallization temperatures of glasses are $450-550^{\circ}$ and $610-645^{\circ}$.

The chemical composition and thermal indications of glasses were given in Table 1.

Nº	Content in mol %			Glass transition temperature, ⁰ C	Crystallization temperature, ^o C	Synthesis regime, °C
	Pr ₂ O ₃	B2O3	Li ₂ O	450-550	610-645	900-1100
1	1,34	74,08	24,68	«-»	«-»	«-»
2	1,73	65,42	32,85	«-»	«-»	«-»
3	2,70	72,97	24,33	«-»	«-»	«-»
4	3,58	64,19	32,23	«-»	«-»	«-»
5	4,22	71,83	23,95	«-»	«-»	«-»
6	5,56	62,95	31,49	«-»	«-»	«-»
7	5,88	70,58	23,53	«-»	«-»	«-»
8	7,69	69,23	23,08	«-»	«-»	«-»
9	8,66	61,54	30,08	«-»	«-»	«-»
10	9,68	67,73	22,58	«-»	«-»	«-»
11	10.00	60,00	30,00	«-»	«-»	«-»
12	12,51	58,36	29,13	«-»	«-»	«-»

Table 1. Contents and physical-chemical data of glasses of Li₂O-Pr₂O₃-B₂O₃ system.

Dependent systems	Content, mol %			Adsorption zone, cm ⁻¹
	Li ₂ O	Pr ₂ O ₃	B2O3]
Li2O-2B2O3- Pr2O3-3B2O3	26,5	5	68,5	444,464,488,524,568,720,760,
				976,1084,1144,1416,1560,1568
	20	10	70	416,464,492,600,624,720,748,
Li2O-2B2O3- Pr2O3-3B2O3				968,976,1092,1092,1196,1376,
				1420,1460,1696
	13,5	15	71,5	416,464,492,600,624,720,748,968, 976, 1080,
Li2O·2B2O3- Pr2O3·3B2O3				1200, 1376, 1424,1456,
				1576, 1584, 1616, 1632, 1696
Li2O-2B2O3- Pr2O3-3B2O3	7	20	73	444,472,504,528,560,620,632,696,
				704,720,760,796,840,932,976,1052,
				1072,1104,1136,1180,1264,1456,
				1576,1632
Li ₂ O·2B ₂ O ₃	33,33	-	66,66	800-1100, 1100-1400
Pr ₂ O ₃				434, 584, 596, 684
B2O3				610,630,700,780,890,950,1035,
				1100,1300
Li ₂ O				685,968

Table 2. IR-spectra of adsorption of glasses of Li₂O-Pr₂O₃-B₂O₃ system.

IR-spectra of samples in $Li_2O-Pr_2O_3-B_2O_3$ were taken. The results were given in Table 2.

In IR-spectra of lithium diborate there are ~800-1100 cm² and 1100-1400 cm² zones, which correspond to trigonal and tetrahedral combinations B-O and B^{III}-O-B^{IV} bridges. In spectra of glasses adsorption zones were found at 1250 and 1360 cm⁻¹. These zones characterize separate links BO₃ and BO chains (Shegolova and Berkovskiy, 1980).

According to authors' opinion BO, B₂O₃, BO₃ and BO₂ molecules can exist in B-O₂ system. IRspectroscopy data give important information at triangulation of triple system Li₂O-Pr₂O₃-B₂O₃.

The zones are more intensive at 1110-1660 cm^{-1} and 590-850 cm^{-1} intervals in B₂O₃ spectrum. B₂O₃ has strong zones in 805, 1190 and 1465 cm^{-1}

¹intervals, but weak zones are in 870, 890 cm⁻¹ intervals. Adsorption zones of higher than 800 cm⁻¹ weren't found in spectra for oxides of rare earth elements.

CONCLUSION

The glass formation area was determined by Li₂O-Pr₂O₃-B₂O₃ system, and its glass-transition diagram was plotted. The investigation of system shows that glass formation area exists in a field of triangle, which is rich with boric anhydride. IR-spectra researches showed, that zones (1250-1360 cm⁻¹), which characterize separate links of BO₃ and BO chains, were found in glass spectra of system.

REFERENCES

Levin, E.M, 1966, Phys. Chem. Glass. 7, 90-93.

- Hamidova Sh.A.; 2005, The properties of glass formation in triple borate systems of Lithium and REE (Nd, Eu), Azerb. Chemistry journal, №1. p.147-149.
- **Hamidova Sh.A**., 1995, Glass formation in Li₂O-B₂O₃-Dy₂O₃. Materials of scientific technical conference on inorganic and physical chemistry, dedicated to 60th anniversary of the Institute,Baku, p.21.
- Hamidova Sh.A. and Kuli-zade E.S., 2004, Glass formation in systems Li₂O-Eu₂O₃ (V₂O₃)-B₂O Dep.VINITI. № 3758-1889, 1989, p.1-14.

- Hamidova Sh.A. and Kuli-zade E.S., 2003, Glass formation in systems Li₂O-B₂O₃-Nd₂O₃ Thesis of abstracts of scientific conference dedicated to 95th anniversary of Academician M.F.Nagiyev. Baku, p.125
- Hamidova Sh.A., Novruzova F.A., and Aliyev I.I., 2006, Melting character of triple compound and triangulation in system Li₂O·B₂O₃-Pr₂O₃-B₂O₃. Journal of Chemical Problems, №2, p.344-346.
- Hamidova Sh.A. and Novruzova F.A., 2007, Glass formation in system Li₂O-Gd₂O₃-B₂O₃, Azerb.Chemcial Journal, №3, 52-54.

Poycon, K., 1969, IR-spectra of adsorption of inorganic substances. M.:Mir. p.109.

Shegolova,M.D., and Berkovskiy E.Y., 1980, Chemical technology., №1, p.17-19.